18 research outputs found

    Remanufacturing as a means for achieving low-carbon SMEs in Indonesia

    Get PDF
    Remanufacturing can reduce the energy intensity and associated greenhouse gas (GHG) emissions significantly and increase the eco-efficiency of product systems by utilizing recovered end-of-life parts. This paper presents the GHG mitigation potential of technically feasible remanufactured alternators in Indonesian small- and medium-sized enterprizes. Life cycle assessment approach and Weibull ++8 software have been used to calculate environmental and quality parameters. Since existing remanufactured alternators have not been found to meet the technical criterion for customers’ satisfaction, a number of alternative remanufacturing strategies have been explored to identify an option that has not only reduced GHG emissions but also has satisfied reliability, durability and warranty period criterion. Three improvement scenarios involving three different remanufacturing strategies were investigated in this case study, and yielded useful insights in order to come up with a technically feasible remanufacturing strategy for reducing a significant amount of GHG emissions. The improvement scenario III, which maximizes the use of used components, was found to offer technically and environmentally feasible remanufacturing solutions. Overall, this research has found that about 7207 t of CO2 -eq GHG emissions and 111.7 TJ embodied energy consumption could potentially be avoided if 10 % of alternators in Indonesian automobile sector are remanufactured using technically feasible remanufacturing strategy

    Environmental supply chain management in the seafood industry: past, present and future approaches

    Get PDF
    This review discusses and analyses previous results in identification, development and implementation of cleaner production strategies within the seafood industry. The relevant peer reviewed articles were identified from a structured keyword search and analysed by both supply chain stage (capture and aquaculture, transport, processing, storage and retail), and examination of the cleaner production strategies implemented. Results found entities along the seafood supply chain generally worked separately to improve cleaner production processes and outputs to grow their own businesses. Whilst this approach can be beneficial, it ignores the broader cleaner production potential benefits gained when applied across multiple supply chain entities. The most effective cleaner production strategies for improved environmental performance in each sector of the supply chain were identified with the potential to reduce unnecessary handling, energy usage, storage costs and waste production. To ensure the greatest reduction in environmental impact, a whole of supply chain management system that incorporates life cycle assessment modelling is recommended

    Greenhouse gas emissions from a Western Australian finfish supply chain

    Get PDF
    Greenhouse gas (GHG) emissions in the form of carbon dioxide equivalent (CO2 - eq) from two Western Australian finfish supply chains, from harvest to retail outlet, were measured using streamlined life cycle assessment methodology. The identification of interventions to potentially reduce the GHG emissions was determined from the results obtained. Electricity consumption contributed to the highest GHG emissions within the supply chains measured, followed by refrigeration gas leakage and disposal of unused fish portions. Potential cleaner production strategies (CPS) to reduce these impacts included installing solar panels, recycling the waste, good housekeeping in refrigeration equipment maintenance, and input substitution of refrigeration gas. The results show a combination of these strategies have the potential to reduce up to 35% of the total GHG emissions from fillet harvest, processing and retail

    Environmental Impact Assessment of Buildings

    Get PDF
    This Special Issue covers a wide range of areas—including building orientation, service life, use of photocatalytically active structures and PV facades, implications of transportation system, building types (i.e., high rise, multilevel, commercial, residential), life cycle assessment, and structural engineering—that need to be considered in the environmental impact assessment of buildings, and the chapters include case studies across the globe. Consideration of these strategies would help reduce energy and material consumption, environmental emissions, and waste generation associated with all phases of a building’s life cycle. Chapter 1 demonstrates that green star concrete exhibits the same structural properties as conventional concrete in Australia. Chapter 2 showed that the use of TiO2 as a photocatalyst on the surface of construction materials with a suitable stable binding agent, such as aggregates, would enable building walls to absorb NOx from air. This study found that TiO2 has the potential to reduce ambient concentrations of NOx from areas where this pollutant becomes concentrated under solar irradiation. Chapter 3 presents the life cycle assessment of architecturally integrated glass–glass photovoltaics in building facades to find the appropriate material composition for a multicolored PV façade offering improved environmental performance. Chapter 4 shows that urban office buildings lacking appropriate orientation experienced indoor overheating. Chapter 5 details four modeling approaches that were implemented to estimate buildings’ response towards load shedding. Chapter 6 covers the life cycle GHG emissions of high-rise residential housing block to discover opportunities for environmental improvement. Chapter 7 discusses an LCA framework that took into account variation in the service life of buildings associated with the use of different types of materials. Chapter 8 presents a useful data mining algorithm to conduct life cycle asset management in residential developments built on transport systems

    Decreasing the carbon footprint of an intensive rice-based cropping system using conservation agriculture on the Eastern Gangetic Plains

    Get PDF
    Emerging conservation agriculture (CA) technologies are being applied in rice-upland cropping systems and their potential to mitigate greenhouse gas emissions of the whole rice-based cropping systems could be significant in South Asia especially if they increase soil organic carbon (SOC) stocks. A streamlined life cycle assessment was conducted in the Eastern Gangetic Plains (Bangladesh) to determine greenhouse gas emissions from successive crops of monsoon rice (Oryza sativa), mustard (Brassica juncea) and irrigated rice under CA practices in contrast with the conventional crop establishment practice while accounting for changes in SOC. The life cycle greenhouse gas tonne−1 rice equivalent yield was assessed for four cropping practices: a) traditional crop establishment practices with farmers’ practice of minimal residue return, or b) CT with return of increased residues; c) strip planting (for mustard)/transplanting on non-puddled soils (for rice) with farmers’ practice of minimal residue return or; d) strip planting/non-puddled transplanting with increased residue return. The global warming potential values for the 100-year timescale were used to calculate CO2eq emissions within the system boundary. The net life cycle greenhouse gas emissions after allowing for changes in SOC sequestration varied from 0.73 to 1.12 tonne CO2eq tonne−1 rice equivalent yield. In the annual cropping system, methane (CH4) released from on-farm stage of the life cycle assessment, particularly from the rice crops, represented the dominant contributor to life cycle greenhouse gas emissions. The greenhouse gas emitted by machinery usage during the on-farm stage (irrigated rice), CO2 emission from soil respiration (monsoon rice), and greenhouse gas related to manufacture of inputs (mustard) were secondary sources of emission, in that order of priority. The non-puddlled transplanting of soil with low and increased residue retention were the most effective greenhouse gas mitigation options when sequestered SOC was taken into account (they avoided 35% of the net life cycle footprints compared with current farmers’ practice) in footprints of component crops of the rice-upland cropping system. The CA approaches being developed for the Eastern Gangetic Plains involving strip planting or non-puddled transplanting of rice have potential to mitigate global warming potential of intensive rice-based triple cropping systems but the life cycle assessment approach needs to be applied to a more diverse range of rice-based cropping systems

    Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    No full text
    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW) with partial replacement of cement in concrete with by-products such as fly ash (FA) and ground granulated blast furnace slag (GGBFS), natural aggregate (NA) with recycled crushed aggregate (RCA), natural sand (NS) with manufactured sand (MS) and, polyethylene terephthalate (PET) foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM) approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses

    Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia - a life cycle assessment

    No full text
    This paper compares the life cycle global warming potential of three of Australia’s important agricultural production activities – the production of wheat, meat and wool in grazed subterranean clover (sub-clover) dominant pasture and mixed pasture (perennial ryegrass/phalaris/sub-clover/grass and cape weed) systems. Two major stages are presented in this life cycle assessment (LCA) analysis: pre-farm, and on-farm. The pre-farm stage includes greenhouse gas (GHG) emissions from agricultural machinery, fertilizer, and pesticide production and the emissions from the transportation of these inputs to paddock. The on-farm stage includes GHG emissions due to diesel use in on-farm transport and processing (e.g. seeding, spraying, harvesting, topdressing, sheep shearing), and non-CO2 (nitrous oxide (N2O), and methane (CH4)) emissions from pastures and crop grazing of lambs.The functional unit of this life cycle analysis is the GHG emissions (carbon dioxide equivalents – CO2 -e) from 1 kg of wheat, sheep meat and wool produced from sub-clover, wheat and mixed pasture plots. The GHG emissions (e.g. CO2, N2O and CH4 emission) from the production, transportation and use of inputs (e.g. fertilizer, pesticide, farm machinery operation) during pre-farm and on-farm stages are also included. The life cycle GHG emissions of 1 kg of wool is significantly higher than that of wheat and sheep meat. The LCA analysis identified that the on-farm stage contributed the most significant portion of total GHG emissions from the production of wheat, sheep meat and wool. This LCA analysis also identified that CH4 emissions from enteric methane production and from the decomposition of manure accounted for a significant portion of the total emissions from sub-clover and mixed pasture production, whilst N2O emissions from the soil have been found to be the major source of GHG emissions from wheat production
    corecore